

Novel source separating sanitation approach for remote tourist facilities at sensitive coastal areas

T.G. Bulc¹, M. Uršič¹, B. Kompare¹, A. Oarga², D. Todt³, A.K. Klemenčič¹

¹University of Ljubljana, Slovenia

²University of Nova Gorica, Slovenia

³Norwegian University of Life Sciences, Norway

Braunschweig, November 2011

Keywords and introduction

Wastewater treatment systems in tourist areas of Europe without sewage infrastructure are facing extremely challenging conditions:

- >technical and legal requirements,
- >extreme climatic conditions,
- >limited energy and water supplies,
- >large seasonal fluctuations.

Because of >technical problems >poor performance >high water consumption >environmental problems >poor comfort

Development of a source separation protoytpe for remote located tourist facilities (70P SANBOX)

4 European research institutions :

- UL University of Ljubljana, Slovenia
- UMB-Norwegian University of Life Sciences
- TU-University of Tartu, Estonia
- TTZ -Technologie Transfer Zentrum
- Bremerhaven, Germany

5 European SME:

• JETS Norway, Norplast Latvia, Seecon, Gysi Switzerland, Bioazul Spain

2 End-users:

- SOLINE Natural park
- SAC- Swiss Alipne Club (Schweizerischer Alpenclub)

Protoype in Alps

Mediterranean prototype

•strong seasonal fluctuation in number of guests (summer peaks of approx. 15.000 visitors compared with annual average of 35.000)

•fluctuated wastewater load which is typical for tourist areas

Main goals

Source separation: blackwater (BW) = toilet waste greywater (GW) = water from hand washing yellow water = urine added to BW

BWS; Solid fraction of BW with nutrients (N and P) will be retained in organic filters and further processed into safe compost for reuse in agriculture.

BWL; Liquid fraction. Reduction of TSS and N. The treated water will be evaporated by solar panel.

GW will be treated in a treatment wetland to produce water for flushing toilets.

Protoype modules

Treatment wetland

PARAMETRES	LAB EXPERIMENT			PILOT SCALE				
	BW module	Bioflter	Compost module	BW module	Biofilter	Compost module	Solar module	С
T 0	D			10/				V
рн				W	Ŵ	V		M
TSS	D	-	W	W	W	W		Ν
Dry matter	D	-	W	W	W	W		Ν
Particles distribution	0	-		W	-			-
NH ₄ ⁺ -N	D		w	w	w	w		Ν
NO ₂ -N	D	-	W	W	W	W		ν
NO ₃ -N	D		w	w	W	w		ν
PO ₄ ³⁻	D		W	w	w	W		Ν
P-tot	D	-	w	W	W	w		ν
COD	D	-		W	W			Ν
BOD ₅	D			w	W			M
CO_2, O_2, CH_4, N_2	-		D	-	-	D		-
Total bacterial count	-			W	W	W	W	Μ
Total coliforms	-			w	w	W	w	М
Faecal enteroccoci	-	-		w	w	W	w	М
Staphylococci	-			w	W	W	w	М
Escherichia coli	-			w	w	w	w	M

Legend: BW-blackwater module; HCW-hybrid constructed wetlands; D-daily; W-weekly

BW separation-Set-up

Lab experiment

Results BW module

Results BW module

Pilot experiment

7-Jan-11 26-Feb-11 17-Apr-11 6-Jun-11 26-Jul-11 14-Sep-11 3-Nov-11

Results compost module

CO₂ release in selected reactors with BWS compost under mesophilic and thermophilic conditions

CO₂ release in BWS compost under mesophilic conditions in selected reactors

Results compost module

Lab experiment

S mixture (BWS, sawdust, oat, bran) the reduction was up to 3 times, for P mixture (BWS, peat, oat, bran) 49 times, experiment B (BWS, bark, oat, bran) 20 times, OB (BWS, bark, oat, bran) 24 times

Pilot scale

Reactor		O ₂ (%)	CO ₂ (%)
Α	min	10.5	0.5
А	max	19.6	5.9
Α	avg	17.9	1.5
В	min	7.2	0.6
В	max	19.6	8.8
В	avg	17.1	2.2

Results biofilter

Results solar evaporating tank

Pilot scale

Bacteriological parameters	Unit	Solar evaporator	Removal (%)
Total bacterial count	MPN/mL	6x10 ³	98.0
Total coliforms	MPN/mL	<10	99.9
Faecal enteroccoci	MPN/mL	1.1x10 ³	99.6
Staphylococci	MPN/mL	1	99.2
Escherichia coli	MPN/mL	no	

Results treatment wetland

Results treatment wetland

Legend: 1. Input Horizontal TW; 2. Output Horizontal TW; 3. Output Vertical TW; BA. Total bacterial count; CO. Total coliforms; EN. Enterobacteriace; EC. *E.coli*

Microbiologicalr results

Legend: 1. BW filters input; 2. BW filters output; 3. Biofilter; 4. Solar evaporation tank; BA. Total bacterial count; CO. Total coliforms; EN. Enterobacteriace; EC. *E.coli*

Genera of Enterobacteriaceae are: Cedecea, Citrobacter, Enterobacter, Escherichia, Hafnia, Klebsiella, Kluyvera, Morganella, Proteus, Rahnella, Salmonella, Serratia, Shigella and Yersinia.

Results summary

	Inflow into peat filters		Outflow from peat filters (n=17)		Expanded clay biofilter		Legislation	Legislatio
<u></u>	average	range	average	re range		average range		n limit value (2)
							(-/	
Physical and chemical								
parameters								
T (°C)	18.5±5.4	8.9-26.2	18.5±5.6	8.6-25.7	21.1±4.6	12-27.4	-	30
рН	8.9±0.6	7.3-9.4	8.7±0.5	7.7-9.2	8.7±0.3	8.3-9.2	-	6.5-9.0
DO (mg/L)	0.4±0.8	0.1-3.3	0.2±0.3	0.1-0.9	3.9±3.3	0.1-8.3	-	-
EC (mS/cm)	7.4±2	2.1-10.5	27.6±82.1	4.6-346	6.5±1.8	2.7-8.4	-	-
TSS (mg/L)	1044.1±434.4	431-1750	387.8±125.6	141.5-630	341.8±84.9	240-525	-	80
NH ₄ -N (mg/L)	799.3±277.3	127-1370	813.2±276.6	303-1315	647.7±208.7	225-845	-	10
NO ₂ -N (mg/L)	0.3±0.3	0-1	1.3±3.6	0-14.5	0.3±0.2	0-0.7	-	1
NO ₃ -N (mg/L)	50.2±60.5	10.9-252.3	46.2±52.6	14.5-215	41.5±54.2	7.8-208	-	25
PO ₄ -P (mg/L)	92.4±38	51.9-204.5	78±35.7	47-197	51.7±25.8	18-127	-	-
TP (mg/L)	109.9±44.4	65.2-217.5	93.9±39.5	51.5-211.5	74.2±39.8	32-190	-	2
COD (mg/L)	2080.3±1117.4	739-5267.5	1484.1±403.4	421.5-2125	738.1±347.1	110-1290	150	120
BOD ₅ (mg/L)	1047.9±436.1	265-1825	962.5±429.4	325-1550	335.4±178.4	150-580	30	25
Bacteriological								
parameters								
Total bacterial count	4x10 ⁶		4x10 ⁸		3x10 ⁵		-	-
(MPN/mL)								
Total coliforms (MPN/mL)	6.5x10 ⁵		1.6x10 ⁷		3x10 ⁴		-	-
Faecal enteroccoci	1.5x10 ⁵		8x10 ⁵		3x10 ⁵		-	-
(MPN/mL)								
Staphylococci (MPN/mL)	100		80		130		-	-
Escherichia coli (MPN/mL)	yes				no		-	-

Slovenian regulations (Uradni list RS 98/2007) concerning the effluent discharges from small communal treatment plants.
Slovenian regulations (Uradni list RS 47/2005) concerning the effluent discharges into the receiving waters.

Conclusions

- The testing results from the SANBOX prototype in Slovenia have proven that it is possible to reach substantial removal rates under the extreme challenging conditions that are related to a Mediterranean climate.
- BW from vacuum toilets differs considerably from conventional wastewater. It has not only a higher concentration on nutrients and organic matter, but has also a special characteristic regarding particle size and distribution (up to 10000 TSS mg/L, <10 μm size)
- Toilet paper layers were reducing hydraulic conductivity
- Solar panel was efficient because all BWL was evaporated
- In terms of high variability of input, the removal efficiency of the pollutants in the system regarding the BW treatment was satisfactory:
- -Bw filters, max values: TSS 83%, NH4-N 48%, TP 61%, COD 76%, BOD 52%
- -Biofilter, max values: TSS 56%, 52%, TP 64%, COD 79%, BOD 84%
- -Results of microbial analyses showed good reduction of different bacterial indicators in the system (BW : E.coli reduction 99.8%, Enterobacteriacea 99.9%, Yeats &Molds 98.8%; TW: E.coli 91.1%, Enterobacteriacea 99.8%, Yeats &Molds 87.6%)
- The prototype was an important step towards source separation and reuse of water and nutrients.

Thank you!

