INTERLINKING URBAN DEVELOPMENT AND URBAN DRAINAGE?

– AN ACTION MANUAL

Lisa Deister
Institute of Landscape Planning and Ecology, University of Stuttgart

Malte Henrichs
Institute for Water·Resources·Environment, FH Münster
THE CITY - A CHANGING HYDROLOGIC SYSTEM: STEPS TOWARDS MANAGEMENT OF THE URBAN WATER BALANCE ADAPTABLE TO CHANGE.

Interlinking urban development and urban drainage? – An action manual

02.11.2015, RE-WATER Braunschweig

Prof. Dipl.-Ing. Antje Stokman
Lisa Deister, M.Sc.
Dipl.-Ing. Fabian Brenne

Prof. Dr. Mathias Uhl
Malte Henrichs, M.Sc.
Julian Langner, M.Sc.
THE CITY – A CHANGING HYDROLOGIC SYSTEM
INCREASING HEAVY RAINFALLS, HEAT WAVES AND DROUGHTS

Climate model projection based on scenario A1B for the Emscher-Lippe region:

- Longer and more intense heat waves, when temperatures can reach 40 °C
- In the future scarcer heavy rainfalls may occur (T ≈ 5a – 20a)

Source: dynaklim
THE CITY – A CHANGING HYDROLOGIC SYSTEM
RELATION BETWEEN URBAN DRAINAGE AND URBAN DEVELOPMENT

Forest

Agriculture

City

Forest

Agriculture

City

Forest

Agriculture

City
THE CITY – A CHANGING HYDROLOGIC SYSTEM
PARADIGM SHIFT TOWARDS WATER SENSITIVE URBAN DESIGN

The old paradigm:
Stormwater should be collected as fast as possible into the drainage system and discharged into water bodies

→ Investment in underground infrastructure

The new paradigm:
Stormwater should be infiltrated, derivated and used

→ Investment in water sensitive urban design

Figure: ILPOE, based on de urbanisten
THE CITY – A CHANGING HYDROLOGIC SYSTEM
WATER MANAGEMENT AS AN IMPULSE FOR URBAN AND OPEN SPACE PLANNING

Sydney park, Australia

Opfikerpark Zürich, Austria (Hager Landschaftsarchitekten)

Bentemplein Rotterdam, Netherlands (de urbanisten)

Zollhallenplatz Freiburg, Germany (Atelier Dreiseitl)
THE CITY – A CHANGING HYDROLOGIC SYSTEM
WATER MANAGEMENT AS AN IMPULSE FOR URBAN AND OPEN SPACE PLANNING

- Loss of interdependencies between spatial planning and water related processes
- Ideal of „clean urbanism“: invisible water infrastructure enables urban development

Schlossgarten above the Nesenbach sewer
Foto: ILPÖ

The stream Nesenbach in Stuttgart, integrated into the combined sewer system.
Foto: ISWA
THE CITY – A CHANGING HYDROLOGIC SYSTEM
WATER MANAGEMENT AS AN IMPULSE FOR URBAN AND OPEN SPACE PLANNING

- Stormwater management often follows a “parcellation approach“ (Beneke 2003:6) relating to small drainage units, often defined by property ownership
- The result is a variety of applied measures that are detached from each other and are not connected to the logics of the watershed
THE CITY – A CHANGING HYDROLOGIC SYSTEM
RESEARCH PROJECT SAMUWA – STEPS TOWARDS AN ADAPTIVE MANAGEMENT

A. Zukunft befragen
A.1 Szenarien der Stadt und Infrastrukturentwicklung
A.2 Stochastischer Niederschlagsgenerator

B. Bestand verbessern
B.1Qualitätsabhi. Steuerung
B.2 Prototyp integr. Steuerung
B.3 Systemoptimierung
B.4 Messdatenmanagement
B.5 Vereinfachter Simulator

C. Zukunft planen
C.1 Freiraumgestaltung
C.2 Wasserbilanzmodell
C.3 Potentialanalyse Regen-
 wasserbewirtschaftung
C.4 Fremd- und Grundwasser-
 bewirtschaftung

D. Hemmnisse überwinden
D.1 Zentrales Informationsportal
D.2 Modul- und Stufenkonzepte
D.3 Integrierte, partizipative Planung

Anpassungsfähiges Management des urbanen
Wasserhaushalts

A. Consult future
Analysis of drivers

B. Improve inventory
C. Plan future
Technical measures and planning solutions

D. Overcome obstacles
Process and structure development

Adaptive management
holistic solution

02.11.2015, Lisa Deister (ILPÖ, Universität Stuttgart), Malte Henrichs (IWARU, FH Münster)
RE-WATER Braunschweig
THE CITY – A CHANGING HYDROLOGIC SYSTEM
STEPS TOWARDS AN ADAPTIVE MANAGEMENT

Project C.1
How can hydrological planning and simulation tools be combined with integrated strategies for urban development and design?

Stormwater management
How can the water balance be integrated within urban development and design strategies?

Flood prevention
How can heavy rain events and flash floods be integrated within urban development and design strategies?

Case study Gelsenkirchen
Development of urban and open space planning strategies as well as appropriate design measures to manage stormwater based on the water balance model “WABILA“.

ILPÖ + IWARU

Case study Wuppertal
Development of urban and open space planning strategies as well as design measures to control floods based on hydrodynamic method of network calculation

(Program system: ++SYSTEMS/GeoCPM“)

ILPÖ + Dr. Pecher AG
THE CITY – A CHANGING HYDROLOGIC SYSTEM
STEPS TOWARDS AN ADAPTIVE MANAGEMENT

Action manual for the case study Gelsenkirchen “Berger Feld”
Interlinking Urban Drainage and Urban Development

Action manual for the case study Wuppertal “Varresbeck”
Interlinking Flood Control and Urban Development
that calls for an interlinkage between urban drainage and urban development strategies, in order to:

• consider the local deficits of the urban water balance,

• foster the promotion of a water sensitive urban development adapted to local conditions and take advantage of financial as well as spatial synergies,

• design water infrastructure in a more resilient and sustainable way in order to be able to respond to climatic and demographic changes.
INTERLINKING URBAN DRAINAGE AND URBAN DEVELOPMENT
DEVELOPMENT OF AN ACTION MANUAL

STEP 1
Defining the spatial frame and understanding the water system in the urban context

STEP 2
Deficit analysis of urban water balance
+ External inputs, e.g.:
- Analyses and projections of urban climate

STEP 3
Analysis of urban development potential
+ External inputs, e.g.:
- Urban development scenarios

STEP 4
4.1 Calculation of urban water balance
+ External inputs, e.g.:
- Hydraulic and structural renovation requirements
- Traffic planning
- Risk analysis flooding
- Identification of potential stormwater management measures

4.2 Urban development concept

Prioritization and definition of focus areas

STEP 5
5.1 Stormwater management measures and calculations

5.2 Open space design concepts

Development of integrated measures and design concepts

PLANING LEVELS

Overall urban context → Catchment areas of water systems Municipalities → Sub-basins of water systems Districts/Neighbourhoods → Project

Source: ILPÖ, Uni Stuttgart/ IWARU, FH Münster

02.11.2015, Lisa Deister (ILPÖ, Universität Stuttgart), Malte Henrichs (IWARU, FH Münster)
STEP 1
DEFINING THE SPATIAL FRAME AND UNDERSTANDING THE WATER SYSTEM IN THE URBAN CONTEXT

The spatial frame is oriented towards the water system and the catchment areas
STEP 1
DEFINING THE SPATIAL FRAME AND UNDERSTANDING THE WATER SYSTEM IN THE URBAN CONTEXT

Analysis of the influence of the spatial urban context on the natural water cycle

Source: ILPÖ, Uni Stuttgart
STEP 2
DEFICIT ANALYSIS OF THE URBAN WATER BALANCE

- Climate data HAD (P and ET$_a$)
- Soil map 1:50.000 (soil types, groundwater level)
- DEM (Relief energy)
- Land uses (crops, grasslands and mixed, deciduous or coniferous forests)

- pre-developed (GWNeu)
- built-up (WABILA)

- ALKIS-data (buildings)
- RVR-Land use maps (green areas, streets, traffic areas)
- Orthophoto interpretation (paved private areas)

- Evaluation

- Aggregation of the water balance for land parcels
- Sum of total deviations
STEP 2
DEFICIT ANALYSIS OF THE URBAN WATER BALANCE
STEP 2
DEFICIT ANALYSIS OF THE URBAN WATER BALANCE
STEP 3
ANALYSIS OF URBAN DEVELOPMENT POTENTIAL

- Analysis of the urban and open space development potential
- Combination of existing concept and plans in order to show the spatial and content-related integration possibilities

Key urban development potentials

- Source: ILPÖ, Uni Stuttgart
STEP 3
ANALYSIS OF URBAN DEVELOPMENT POTENTIAL

Urban development scenarios
• Which changes in the urban structure can be expected as a consequence of shifts in the economic patterns, demographic changes and new demands of society?
• How can both fields water management and urban planning be interlinked?
STEP 3
DEVELOPMENT OF A WATER-RELATED URBAN CONCEPT

- Interlinkage between open space planning aspects, development trends and potentials for stormwater management
- Transference of the results into an overall strategic plan

Rotterdam Waterplan 2030
Source: Waterplan 2, Municipality of Rotterdam
STEP 4
PRIORITIZATION AND DEFINITION OF FOCUS AREAS

- Identification of focus areas with the greatest possible synergy effects by overlaying information from different fields
- Urban development measures as a motor for water-related interventions (and vice versa)

Source: ILPÖ, Uni Stuttgart/
IWARU, FH Münster

Procedure for determining areas with needs for action / synergies with the help of the GIS-based cooperation module ZUGABE
Source: Abschlussbericht „Integrale Wasserwirtschaft als Motor der Stadt- und Freiraumentwicklung in Herten“, EGLV 2014
STEP 4
PRIORITIZATION AND DEFINITION OF FOCUS AREAS

(06) Residential area + open space: compensation of water balance, flood protection and attractive living environment

(02) Unbundling/ stream restoration, flood protection and attractive pathway

(07) Attractive street design including infiltration and flood protection

(08) Water sensitive industrial area in terms of water balance and flood control

(01) Water sensitive commercial district

(04) Residential area + park: compensation of water balance and attractive living environment

(05) Industry + brownfield: compensation of water balance and open space design

(03) Water sensitive industrial area and expansion of green axis

Preliminary focus areas
Source: ILPÖ/ IWARU
STEP 5
DEVELOPMENT OF INTEGRATED MEASURES AND DESIGN CONCEPTS

Focus of measures

Potential areas for stormwater management in urban context

Urban development potential areas
- Multifunctional land-uses

Underground sewage system
- Separated system

Groundwater table

- Common strategy development and an intensive communication between urban drainage specialists and urban planners
- Interaction between urban drainage measures and open space design in terms of a multifunctional design that improves urban spaces
- Iterative design process with the help of simulation and calculation software
- Visualisation of design options

Source: ILPÖ, Uni Stuttgart
CONCLUSIONS

- The action manual intends to support interdisciplinary collaboration by synchronizing working steps and identifying points of interaction between urban drainage and urban planning disciplines.

- Different specific local measures and development scenarios can be compared with the help of WABILA-model, which allows the optimization of the water balance through the interaction between spatial planning strategies and water management.

- As a result, this integrative planning process creates a new basis for creative solutions that maximize synergies and develop the urban system in a more resilient and sustainable way based on a more sensitive management of the urban water balance.
PARTNER / PROJEKTTEAM

ILPÖ
Prof. Dipl.-Ing. Antje Stokman
Dipl.-Ing. Fabian Brenne
Lisa Deister, M.Sc.

IWARU
Prof. Dr. Mathias Uhl
Malte Henrichs, M. Sc.
Julian Langner, M. Sc.