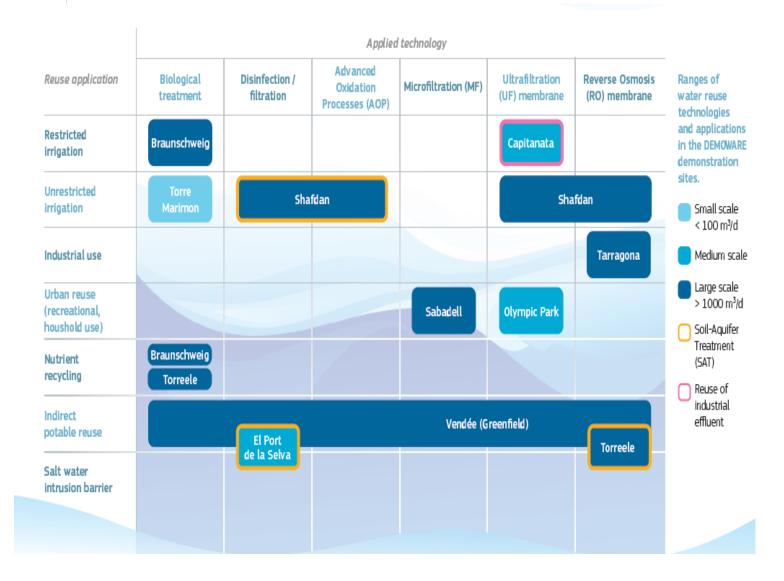
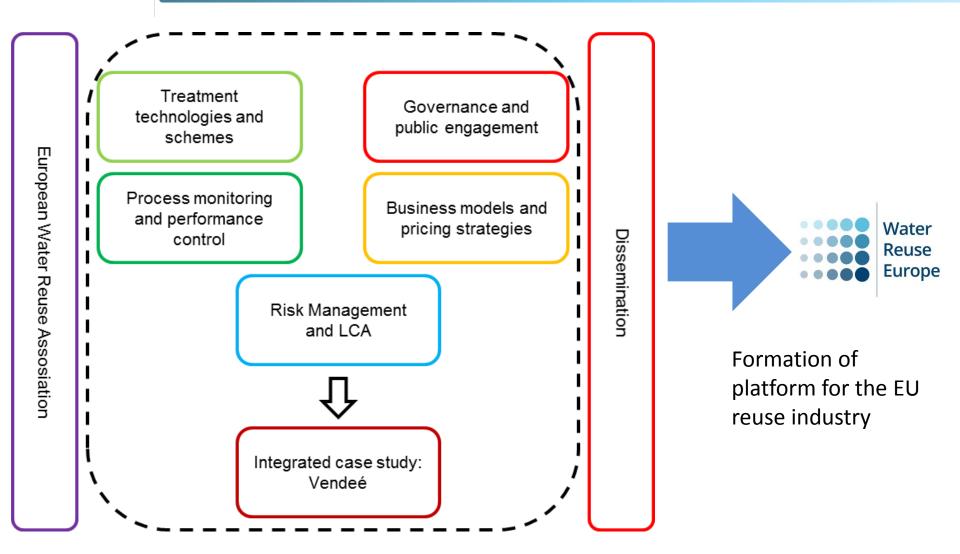
DEMOWARE

Project Demoware -Overview and Water Reuse Europe

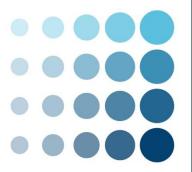
Xavier Martinez, Miquel Rovira (CTM)
Paul Jeffrey, Kristell Le Corre Pidou
(Cranfield University)



Innovation Demonstration for a Competitive and Innovative European Water Reuse Sector



Case studies



Project structure

Water Reuse Europe (WRE)

Water Reuse Europe

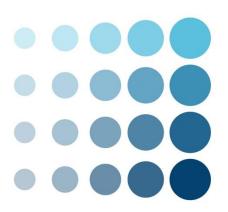
The trade association for organisations involved in the European water reuse sector.

WRE' mission is to create a collective identity for the European water reuse sector and promote an innovative and dynamic water reuse industry.

WRE's objectives

To facilitate knowledge exchange amongst public and private entities involved in water reuse;

To promote European expertise and services in water reuse to a global audience;



To support European companies (particularly SMEs) in their efforts to commercialise water reuse solutions;

To promote research and innovation on water reuse.

Water Reuse Europe

Official launch by the end of 2015!

Stay connected at: http://www.water-reuse.eu

For more information on WRE and membership, please contact the WRE Secretariat at:

info@wre-reuse.eu

Results from disinfection trials at WWTP Steinhof

Ulf Miehe, Johan Stüber, Ludwig Reichelt (KWB)

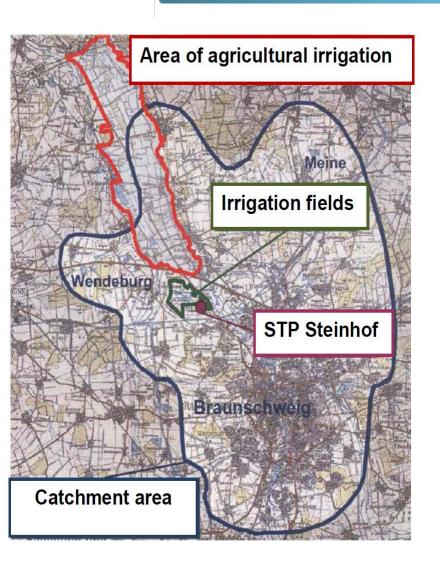
Christoph Siemers, Florian Grass (SE/BS)

Background and Outline

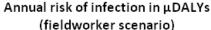
1. Motivation

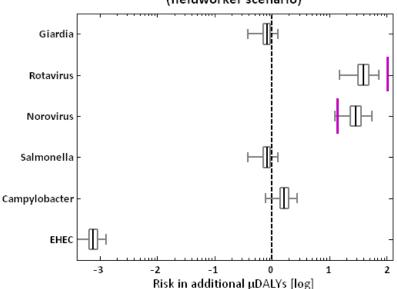
Initial situation

- **CODIGREEN**
- Results from microbial risk assessment
- 2. Pilot trial on disinfection
 - Ambition
 - UV disinfection
 - Performic acid disinfection (PFA)

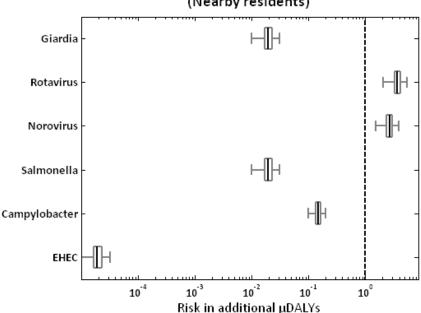

- 3. Cost estimation
 - UV vs. PFA

Motivation: Water reuse in Braunschweig




- Secondary effluent is used for irrigation via sprinkler irrigation
- Microbial parameters not regulated in legal permission
- No directly consumed crops produced
- Minimum distance to local communities regulated (60-150m)
- During summer: digested sludge is added to the irrigation water (thermophilic+mesophilic digestion → excluded in RA)

Motivation: First risk assessment based on literature data

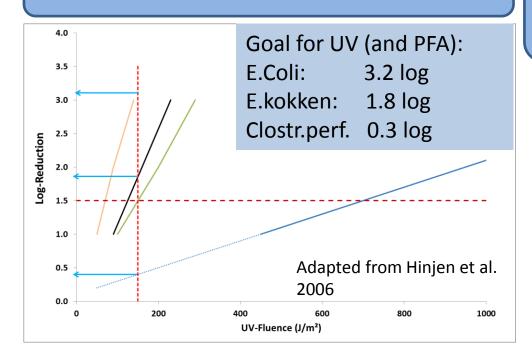

Calculated risk resulting from <u>viruses</u> exceed the tolerable level of $1\mu DALY$ (WHO):

- 1. Need to perform QMRA study with field data on microbial parameter
- 2. Possible countermeasures should be assessed

For comparison:
Present background risk in Germany:

____ Rota: 110 μDALYs pppy Noro: 14 μDALYs pppy

Annual risk of infection in µDALYs (Nearby residents)



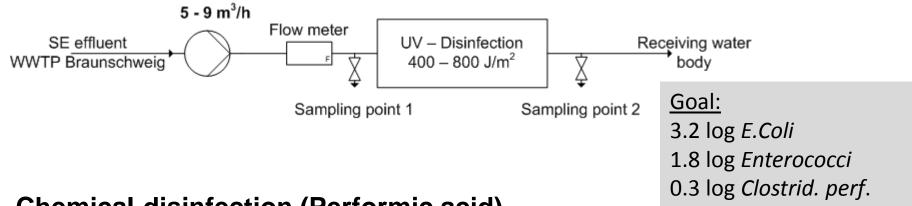
Disinfection target

Parallel Approach

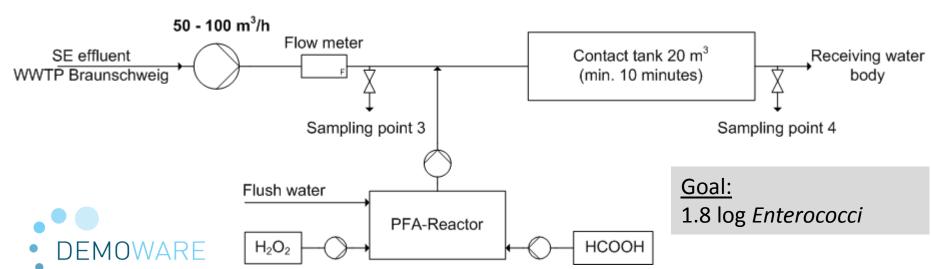
Indirect target: 1.5 log reduction for Rotavirus

Direct target: class 3 according to

DIN19650: "Bewässerung - Hygienische


Belange von Bewässerungswasser"

Intest. Enterococci ≤ 400 MPN/100 mL Escherichia Coli ≤ 2000 MPN/100 mL



Pilot units

UV disinfection

Chemical disinfection (Performic acid)

Pilot trials at WWTP Steinhof

UV Disinfection

Trial planning + monitoring

Phase 1 (6 Weeks):

- Variation of dosing
 - ➢ low medium high

	low	medium	high
PFA (ppm)	1,4	2,0	2,7
UV (Wh/m³)	27	32	44

Goal:

- Disinfection performance at changing water quality
- Setting of dosing conditions for phase 2

Phase 2 (6 weeks):

 Evaluation of disinfection performance with dosing conditions defined in phase 1

Analyses

Standard parameter – WWTP Steinhof lab

Bacteria:

E.Coli, Enterokokken, Clostridium perfringens – Labor UCL

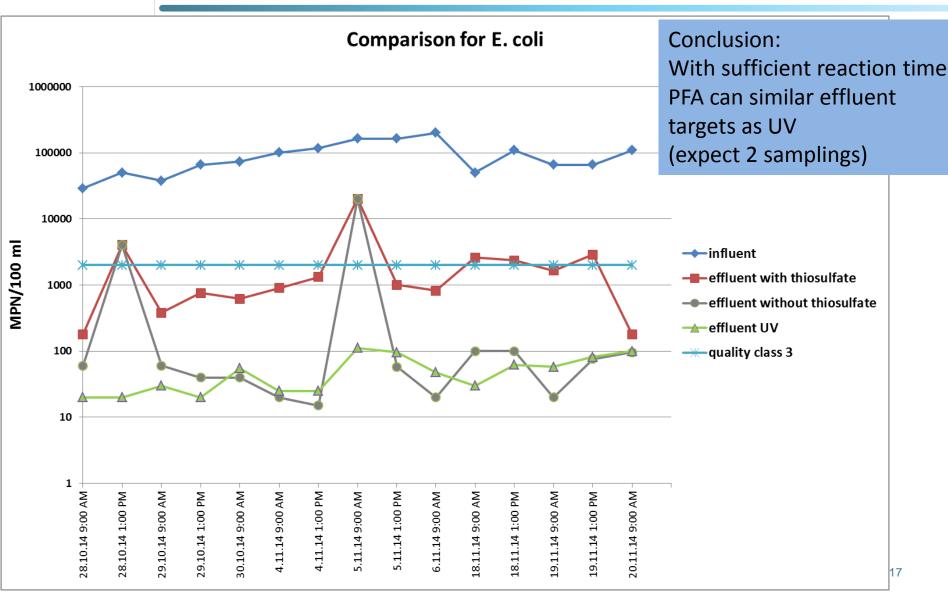
Virus:

Somat. Coliphagen – Labor BWB

Disinfection performance Phase 1

			UV [Wh/m³]			PFA[ppm]				
		Indirect Target	27	32		44	1.4		2.0	2.7
E. Coli	log(N ₀ /N)	3.2	2.7	3.0		3.7	1.6		1.9	2.6
E. Cocci	log(N ₀ /N)	1.8	1.8	2.1		2.7	1.5		1.8	2.4
Clostridium perfringens	log(N ₀ /N)	0.3	0.4	0.5		0.4	0.1		0.2	0.3
Coliphages	log(N ₀ /N)		3.2	4.0		3.6	2.6		2.4	2.5

UV disinfection:


- Performance as expected → 35 Wh/m³ (~ 700 J/m²) for Phase 2

Perfomic acid:

- Performance lower as expected
- Tracer test revealed short cutting in reaction tank → minimal HRT only 3 min
- 2 ppm chosen for phase 2 (but additional samples to be taken without thiosulphate dosing during sampling (thiosulphate stops the reaction)

Stability of disinfection and effect of reaction time (Benchmark 2000 E.Coli/100 mL)

Disinfection performance Phase 1+2

			UV [Wh/m³]				PFA[ppm]			
		Indirect Target	27	32	35	44	1.4	2.0*	2.0	2.7
E. Coli	log(N ₀ /N)	3.2	2.7	3.0	3.2	3.7	1.6	3*	1.9	2.6
E. Cocci	log(N ₀ /N)	1.8	1.8	2.1	2.3	2.7	1.5	2.3*	1.8	2.4
Clostridium perfringens	log(N ₀ /N)	0.3	0.4	0.5	0.4	0.4	0.1	0.4*	0.2	0.3
Coliphages	log(N ₀ /N)		3.2	4.0	4.3	3.6	2.6	n.a.	2.4	2.5

^{*} Without stopping the reaction with thiosulphate (HRT > 6-10 min)

UV disinfection:

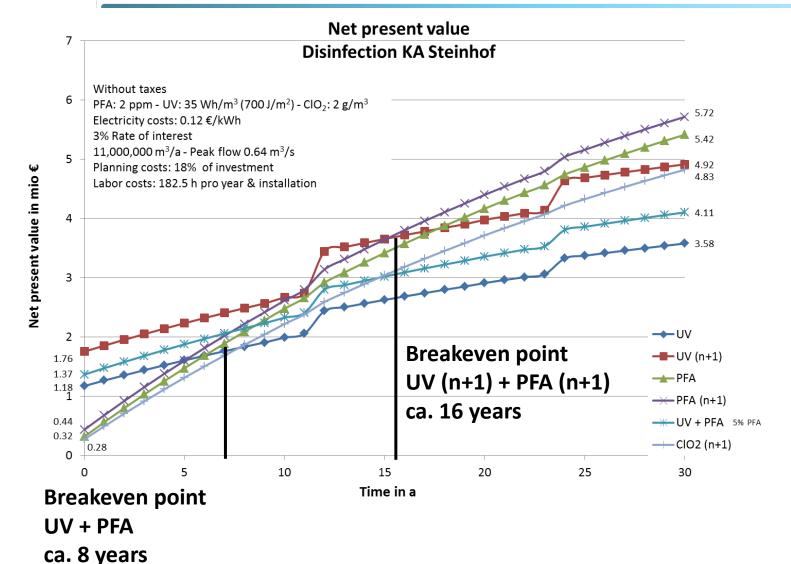
- Performance as expected \rightarrow 35 Wh/m³ (~ 700 J/m²) for Phase 2

Perfomic acid:

Performance with longer HRT (> 6-10 min) in the range of UV

Conclusion disinfection performance

UV:


- Quality class 3 (DIN 19650, e.g. fruit and vegetables for preservation) achievable with 35 Wh/m³ (no filtration!)
- Indirect goal (1,5 log for Noro-/Rotavirus) in average achieved, but not in all samples (13 out of 26 for E.Coli)

Performic acid:

- Quality class 3 (DIN 19650, e.g. fruit and vegetables for preservation)
 achievable with 2 ppm (with sufficient reaction time; minimum time 5-6
 min; not average HRT!)
- Indirect goal (1,5 log for Noro-/Rotavirus) in average achieved, but not in all samples (15 out of 23 short HRT; 13 out of 13 long HRT for Intestinal Enterococci)
- In some cases strongly reduced disinfection performance. No hints found in water quality, but partly due to PFA dosing station: flushing of dosing pipes to prevent blocking by bubbles)

Net present value (30 a) for different scenarios (assumption <u>current annual water flow</u>)

Net present value (30 a) for different scenarios (assumption water flow = crop demand)

Comparison of design approaches

Total annual cost in ct/m³

Annual vol. (Mio m³/a)	Peak flow (m³/s)	Capacity usage (%)	UV	PFA	UV (n+1)	PFA (n+1)	UV (+PFA)
3.6	0.64	16	4.5	3.1	6.3	3.5	5.3
11 (current flow)	0.64	54	1.8	2.3	2.4	2.6	2.1

Conclusion cost calculation:

- Current flow conditions:
 - UV more on economic on long-term
 - Break-even point: 8a without redundancy, 16 a with n+1
- Demand driven flow conditions (120 mm/ha)
 - PFA more economic in all cases
- Overall conclusion:
 - The lower the capacity usage (= Average flow/Peak flow), the more favorable is chemical disinfection (OPEX driven).

• DEMOWARE

The European Union is acknowledged for co-funding DEMOWARE within the 7th Framework Programme under grant agreement n° 619040

